G1000 Line Maintenance Manual
Contents. Components An aircraft with a basic Garmin G1000 installation contains two LCD displays (one acting as the primary flight display and the other as the multi-function display) as well as an integrated communications panel that fits between the two. These displays are designated as a GDU, Garmin Display Unit. Beyond that, additional features are found on newer and larger G1000 installations, such as in business jets. This includes:. A third display unit, to act as a co-pilot PFD.
An alphanumeric keyboard. An integrated flight director/autopilot (without it, the G1000 interfaces with an external autopilot) Depending on the airplane manufacturer and whether or not a GFC 700 is installed, the G1000 system will consist of either two GDU 1040 displays (no autopilot), a GDU 1040 PFD/GDU 1043 MFD (GFC 700 autopilot installed), or a GDU 1045 PFD/GDU 1045 MFD (GFC 700 autopilot installed with ). The GDU 1040 is the standard base bezel with no autopilot/flight director mode selection keys below the heading bug. The GDU 1043 has autopilot/flight director keys for all GFC 700 modes except VNAV. The GDU 1045 is essentially identical to the GDU 1043 except for the addition of an autopilot/flight director mode for VNAV.
Depending on how the units are installed, an MFD failure may, or may not, affect autopilot or flight director use. If a GDU 1040 is used as a PFD in an airplane equipped with a GFC 700 autopilot, a failure of the MFD (which houses the autopilot mode selection keys) will leave the autopilot engaged, but the modes cannot be changed because no autopilot keys are present on the PFD. But, if an MFD failure occurs in an airplane with the GFC 700 autopilot and either a GDU 1043 or a GDU 1045 bezel installed as a PFD, the pilot will have full use of the autopilot through the keys on the PFD. Both the PFD and MFD each have two slots for.
The top slot is used to update the aviation database (also known as NavData) every 28 days, and to load software and configuration to the system. The aviation database must be current to use GPS for navigation during IFR instrument approaches. The bottom slot houses the World terrain and Jeppesen obstacle databases. While terrain information rarely changes or needs to be updated, obstacle databases can be updated every 56 days through a subscription service. The top card can be removed from the G1000 system following an update, but the bottom card must stay in both the PFD and MFD to ensure accurate terrain awareness and information.
Primary flight display (PFD). Screenshot of the PFD on the G1000 The primary flight display shows the basic flight instruments, such as the, the, the, and course deviation indicator.
A small map called the 'inset map' can be enabled in the corner. The buttons on the PFD are used to set the on the. The PFD can also be used for entering and activating flight plans. The PFD also has a 'reversionary mode' which is capable of displaying all information shown on the MFD (for example, engine gauges and navigational information). This capability is provided in case of an MFD failure. Multi-function display (MFD). The MFD usually shows engine instrumentation and a moving map.
The multi-function display typically shows a moving map on the right side, and engine instrumentation on the left. Most of the other screens in the G1000 system are accessed by turning the knob on the lower right corner of the unit. Screens available from the MFD other than the map include the setup menus, information about nearest airports and, reports, terrain awareness, flight plan programming, and GPS prediction. Implementation The G1000 system consists of several integrated components which sample and exchange data or display information to the pilot. GDU display The GDU display unit acts as the primary source of flight information for the pilot. Each display can interchangeably serve as a primary flight display (PFD) or multi-function display (MFD). The wiring harness within the aircraft specifies which role each display is in by default.
All of the displays within an aircraft are interconnected using a high-speed data bus. A G1000 installation may have two GDUs (one PFD and one MFD) or three (one PFD for each pilot and an MFD). There are several different GDU models in service, which have different screen sizes (from 10 inches to 15 inches) and different bezel controls.
In normal operation, the display in front of the pilot is the PFD and will provide aircraft attitude, airspeed, altitude, vertical speed, heading, rate-of-turn, slip-and-skid, navigation, transponder, inset map view (containing map, traffic, and terrain information), and systems annunciation data. The second display, typically positioned to the right of the PFD, operates in MFD mode and provides engine instrumentation and a moving map display. The moving map can be replaced or overlaid by various other types of data, such as satellite weather, checklists, system information, waypoint information, weather sensor data, and traffic awareness information.
Both displays provide redundant information regarding communications and navigation radio frequency settings even though each display is usually only paired with one GIA Integrated Avionics Unit. In the event of a single display failure, the remaining display will adopt a combined 'reversionary mode' and automatically become a PFD combined with engine instrumentation data and other functions of the MFD. A red button labeled 'reversionary mode' or 'display backup,' located on the GMA audio panel, is also available to the pilot to select this mode manually if desired. GMA audio panel The GMA panel provides buttons for selecting what audio sources are heard by each member of the cockpit. It also includes a button for forcing the integrated cockpit into its fail-safe reversionary mode. GMC/GCU remote controllers The GMC and GCU controllers are panel-mounted modules which provide a more intuitive interface for the pilot than that provided by the GDU. The GMC controls the G1000's autopilot, while the GCU is used to enter navigational data and control the GDU's functions.
GIA integrated avionics unit The GIA unit is a combined communications and navigation radio, and also serves as the primary data aggregator for the G1000 system. It provides a two-way communications transceiver, a VHF navigation receiver with glideslope, a GPS receiver, and a variety of supporting processors. Each unit is paired with a GDU display, which acts as a controlling unit. The GIA 63W, found on many newer G1000 installations, is an updated version of the older GIA 63 which includes support. GDC air data computer The GDC computer replaces the internal components of the pitot-static system in traditional aircraft instrumentation. It measures airspeed, altitude, vertical speed, and outside air temperature.
This data is then provided to all the displays and integrated avionics units. GRS attitude and heading reference system (AHRS) The GRS system uses solid-state sensors to measure aircraft attitude, rate of turn, and slip and skid.
This data is then provided to all the integrated avionics units and GDU display units. Unlike many competing systems, the can be rebooted and recalibrated in flight during turns of up to 20 degrees. GMU magnetometer The GMU magnetometer measures aircraft heading and is a digital version of a traditional compass.
It does so through aligning itself with the magnetic flux lines of the earth. GTX transponder Either the GTX 32 or GTX 33 transponder can be used in the G1000 system, although the GTX 33 is far more common. The GTX 32 provides standard mode-C replies to ATC interrogations while the GTX 33 provides mode-S bidirectional communications with ATC and therefore can indicate traffic in the area as well as announce itself spontaneously via 'squittering' without prior interrogation. GEA engine/airframe unit The GEA unit measures a large variety of engine and airframe parameters, including engine RPM, manifold pressure, oil temperature, cylinder head temperature, exhaust gas temperature, and fuel level in each tank. This data is then provided to the integrated avionics units. GSD data aggregator The GSD is a data aggregator system included on complex G1000 systems, such as that found on the. It serves as a point of connection which allows external systems to communicate with the G1000.
Backup systems As a condition of certification, all aircraft utilizing the G1000 integrated cockpit must have a redundant airspeed indicator, altimeter, attitude indicator, and magnetic compass. In the event of a failure of the G1000 instrumentation, these backup instruments become primary. In addition, a secondary power source is required to power the G1000 instrumentation for a limited time in the event of a failure of the aircraft's alternator and primary battery. Certification The Garmin G1000 is generally certified on new, including, (the Kodiak 100), and. Garmin announced its first G1000 retrofit program for the in 2007 followed by the Beechcraft B200 King Air in 2009.
The Garmin G1000 became a jet platform in 2007, as the avionics system for the. Versions of the G1000 are also used in the and, and, as well as the. Although the G1000 was developed in cooperation with Honda, the uses G3000. Competition The G1000 competes with the and Chelton FlightLogic EFIS. However, there are significant differences with regard to the features, degree of integration, intuitive aspects of the design, and overall product utility. Note that the Chelton system is not typically found in airplanes that include the less expensive G1000 or Avidyne systems. In 2009 Garmin introduced the Garmin G500 as a retrofit glass cockpit.
The G500 has the majority of the capabilities of the G1000 but integration with the aircraft engine system. Advantages and drawbacks. See also: As it has, and components built directly into the system, it both consolidates components into a centralized location and, for the same reason, becomes potentially more costly to repair or replace. The system has the potential to reduce downtime as key components, such as the AHRS, ADC and PFD, are modular and easily replaced. The system's design also prevents the failure of a single component from 'cascading' through other components. The G1000 is compatible with the latest technology.
Enhanced vision systems use thermal and infrared cameras to see real-time images and help turn obscurants such as bad weather, night time, fog, dust and brownouts into better images that can see 8-10 times farther than the naked eye. There are some safety concerns with all glass cockpits, such as the failure of the primary flight displays (PFD). The Garmin G1000 system offers a reversionary mode that will present all of the primary flight instrumentation on the remaining display.
In addition, there are multiple GPS units, and electronic redundancy incorporated extensively throughout the design of the system. Training and training resources Flying any glass cockpit aircraft requires transition training to familiarize the pilot with the aircraft's systems. Transition training is most effective when a pilot prepares ahead of time. Most general aviation manufacturers using the G1000 system have (FITS) training programs for pilots transitioning into their airplanes. FAA FITS compliant training is recommended for any pilot transitioning to the G1000 or any other glass cockpit prior to operating the aircraft in (IMC) or if operating a glass cockpit aircraft for the first time. Glass cockpit aircraft may not be suitable for primary training.
One of the most effective resources for preparing for G1000 transition training include the Garmin simulator software. In addition, some flight schools now have G1000 flight training devices (FTDs) that provide realistic simulation. All of the most current Garmin G1000 pilot's guides are available in PDF format for free downloading from.
References.
Garmin System Software, Optional Equipment & Database Guides G1000 - Service Alerts & Advisories Cessna's Disposition Released Date Cessna Models with the Garmin G1000 Integrated Flight Deck System have not approved GIA 63W (WAAS) system software v5.80 or v5.81. Cessna has been planning the approval of GIA 63W (WAAS) system software v5.82 or later for future software builds. This issue does not apply to any Cessna approved installations. 3/10/2009 Cessna experienced issue's during Synthetic Vision Technology (SVT) certification flights and has therefore disabled the Pathways feature on all Cessna models equipped with Garmin G1000 with the (SVT) option. Cessna plans on enabling the Pathways feature when an appropriate fix is implemented that will remove the possibility of inaccurate presentation of Pathways as addressed in Garmin Service Advisory #0904. Cessna has issued Service Bulletin SB11-34-01 R1 G1000 System Software upgrade to 0563.21 for airplanes equipped with NAV III and WAAS. This software upgrade resolves Garmin Service Advisory No.
0904 and enables Pathways for WAAS equipped NAV III airplanes only. See SB11-34-01 R1 for serial effectivity. 1/30/2009 Revised 3/7/2011 Propeller Aircraft G300 The following user guides are provided on the specifically for the Cessna Skycatcher. Click on Manuals under the Quicklinks section on the right side of the page. G300 Pilots Guide SL 40 Comm Radio User Guide GTX 327 Transponder User Guide G300 Database Loading Instructions G1000 Database Loading Instructions G1000 Released Date Cessna's Disposition - This manual was written for Cessna Caravan G1000 System Software v767.23 or later approved software. Some differences in operation may be observed when comparing the information in this manual to earlier or later software versions.
G1000 Line Maintenance Manual
November 2014 Cessna's Disposition - This manual was written for Cessna Caravan G1000 System Software v767.00 or later approved software. Some differences in operation may be observed when comparing the information in this manual to earlier or later software versions. November 2012 Electronic Pilot's Checklist The Electronic Checklist is approved for use in Models, and with Garmin G1000 Avionics. NOTE: Not approved for use on the Caravan or Skycatcher May 2011 G1000 NXi Released Date This manual was written for the Cessna Caravan G1000 NXi system software version 2499.00 or later approved software.
Some differences in operation may be observed when comparing the information in this manual to later software versions. April 2017 Optional Equipment and Database Guides Designed to assist new owners with understanding their G1000 subscription databases. Learn what databases need updated, how often and where. SVT 'Synthetic Vision Technology' 'See what you're missing!' Whatever it is that's keeping you from seeing the ground or the horizon clearly, SVT can make a world of difference in your cockpit: By filling in the details (via database simulation), it makes situational orientation far easier and less stressful. This in turn makes for better decision-making and significantly reduced pilot workload to make flying your Cessna easier than ever before. Your PFD comes alive with actual real-time forward-looking depictions of hazards such as terrain, obstacles and traffic.
Garmin G1000 Caravan Line Maintenance Manual
SVT enhances the PFD with new flight tools like Flight Path Markers, Zero Pitch Line, Airport Identifiers and Runway Thresholds. To order SVT, contact your Cessna Authorized Service Facility. TAWS-B Terrain Awareness and Warning System Class-B, TAWS-B, enhancement improves the current Terrain and Obstacle Proximity system by providing additional integrated warnings and cautions with both aural and visual warning of impending terrain and obstacles. Hearing the words 'PULL UP' or 'WARNING TERRAIN' through TAWS-B gives you the valuable time needed to react! To order TAWS-B, contact your Cessna Authorized Service Facility.
Traffic Advisory System released with SB07-34-03R1 allows the pilot to have an increase situation awareness of surrounding traffic. The installation of KTA-870 Traffic Advisory System allows your airplane transponder to communicate range, bearing and altitude of your position with other airplane transponders. The Traffic Advisory System also gives verbal alerts to the pilot that an immediate action is required when there is impeding traffic. TAS is available for Nav III aircraft only (Models 182T/T182T & 206H/T206H). SafeTaxi SafeTaxi, is a graphical depiction of over 700 US airport diagrams. SafeTaxi increases your situational awareness of the runways with numbers, taxiways with identifying letters/numbers, and airport landmarks including ramps, buildings, control towers and other prominent features. To order SafeTaxi, contact your Cessna Authorized Service Facility.
Automatic Directional Finder and Distance Measuring Equipment (DME) modification kits allow you to install a Honeywell/Bendix-King KR87 ADR and/or the KN63 DNE in NAV III Cessna Airplanes. Contact your Cessna Authorized Service Facility for installation inquiry.